The effect of diabetes mellitus on the pharmacokinetics and pharmacodynamics of tuberculosis treatment

Citation: Alfarisi O, Mave V, Gaikwad S, Sahasradubhe T, Ramachandran G, Kumar H, Gupte N, Kulkarni V, Deshmukh S, Atre S, Raskar S, Lokhande R, Barthwal M, Kakrani A, Gupta A, Golub J, Dooley K. The effect of diabetes mellitus on the pharmacokinetics and pharmacodynamics of tuberculosis treatment. Antimicrob Agents Chemother. 2018 Aug 20. pii: AAC.01383-18. doi: 10.1128/AAC.01383-18. [Epub ahead of print]. PMID: 30126955.

Access full article:

https://www.ncbi.nlm.nih.gov/pubmed/30126955

Background

Diabetes mellitus (DM) and tuberculosis (TB) are two common diseases with increasing geographic overlap and clinical interactions. The effect of DM and hemoglobin A1c (HbA1c) values on the pharmacokinetics and pharmacodynamics of anti-TB drugs remains poorly-characterized.

Methods

Newly-diagnosed TB patients with and without DM starting fixed-dose, thrice-weekly treatment underwent sampling for PK assessments (pre-dose, 0.5, 2, 6 hours post-dose) during intensive and continuation phases of treatment. The effect of DM and HbA1c on the maximum concentration (Cmax) of rifampin, isoniazid, and pyrazinamide and the association between drug concentrations and microbiologic and clinical outcomes were assessed.

Results

Of 243 patients, 101 had DM. Univariate analysis showed significant reductions in Cmax of pyrazinamide and isoniazid (but not rifampicin) with DM or increasing HbA1c. After adjusting for age, sex, and weight, DM was associated only with reduced pyrazinamide concentrations [adjusted GMR: 0.74, p=.032]. In adjusted Cox models, female gender (aHR=1.75, p=0.001), lower Xpert smear grade (aHR=1.40, p<0.001) and pyrazinamide Cmax (aHR=0.99, p=0.006) were independent predictors of sputum culture conversion to negative. Higher isoniazid or rifampicin concentrations were associated with faster time to culture conversion in patients with DM only. Pyrazinamide Cmax above the therapeutic target was associated with higher unfavorable outcomes (treatment failure, relapse, death) [OR: 1.92, p=.041].

Conclusion

DM and higher HbA1c increased the risk of not achieving therapeutic targets for pyrazinamide (but not rifampicin or isoniazid). Higher pyrazinamide concentrations, though, were associated with worse microbiologic and clinical outcomes. DM status also appeared to influence PK-PD relationships for isoniazid and rifampicin.

Antimicrobial Agents and Chemotherapy

Categories

CRS
Topics

Clinical Trials

A5274: REMEMBER, Reducing Early Mortality and Early...

This study is being done in people who are starting HIV treatment and who live in areas where the TB infection rate is high. The...

Read More

A5342: Evaluating the Safety, Tolerability, and Effect of a...

The purpose of this study is to evaluate the safety, tolerability, and effect of an experimental human monoclonal antibody...

Read More

A5300/P2003: PHOENIx Feasibility Study

Study of MDR TB Cases and Their Household Contacts: Operational Feasibility to Inform PHOENIx Trial Design

Read More

NWCS 414, Evaluation of a Serum Biosignature for Identifying...

We will address our hypothesis using a case-control study design. We plan to leverage the existing biorepository of...

Read More

A5329: Interferon –Free Therapy for Chronic Hepatitis C...

A5329 is a study for people who are infected with both HIV and the Hepatitis C virus (HCV) and have never taken Hepatitis C...

Read More