Treatment with integrase inhibitor suggests a new interpretation of HIV RNA decay curves that reveals a subset of cells with slow integration

Citation: Cardozo EF, Andrade A, Mellors JW, Kuritzkes DR, Perelson AS, Ribeiro RM. Treatment with integrase inhibitor suggests a new interpretation of HIV RNA decay curves that reveals a subset of cells with slow integration. PLoS Pathog. 2017 Jul 5;13(7):e1006478. doi: 10.1371/journal.ppat.1006478. eCollection 2017 Jul. PMID: 28678879; PMCID: PMC5513547 

Access full article:

https://www.ncbi.nlm.nih.gov/pubmed/28678879

The kinetics of HIV-1 decay under treatment depends on the class of antiretrovirals used. Mathematical models are useful to interpret the different profiles, providing quantitative information about the kinetics of virus replication and the cell populations contributing to viral decay. We modeled proviral integration in short- and long-lived infected cells to compare viral kinetics under treatment with and without the integrase inhibitor raltegravir (RAL). We fitted the model to data obtained from participants treated with RAL-containing regimes or with a four-drug regimen of protease and reverse transcriptase inhibitors. Our model explains the existence and quantifies the three phases of HIV-1 RNA decay in RAL-based regimens vs. the two phases observed in therapies without RAL. Our findings indicate that HIV-1 infection is mostly sustained by short-lived infected cells with fast integration and a short viral production period, and by long-lived infected cells with slow integration but an equally short viral production period. We propose that these cells represent activated and resting infected CD4+ T-cells, respectively, and estimate that infection of resting cells represent ~4% of productive reverse transcription events in chronic infection. RAL reveals the kinetics of proviral integration, showing that in short-lived cells the pre-integration population has a half-life of ~7 hours, whereas in long-lived cells this half-life is ~6 weeks. We also show that the efficacy of RAL can be estimated by the difference in viral load at the start of the second phase in protocols with and without RAL. Overall, we provide a mechanistic model of viral infection that parsimoniously explains the kinetics of viral load decline under multiple classes of antiretrovirals.

Categories

CRS
Topics

Clinical Trials

P2010: Phase III Study of the Virologic Efficacy and Safety...

IMPAACT 2010 is a Phase III, three-arm, randomized, open-label study of HIV-1-infected pregnant women initiating either a...

Read More

P2026: Pharmacokinetic Properties of Antiretroviral and...

IMPAACT P1026s, the predecessor of this study, was first approved in 2003. P1026s enrolled over 1000 pregnant/postpartum women,...

Read More

A5320: Viral Hepatitis C Infection Long-term Cohort Study...

A5320/V-HICS is an observational, prospective, long-term follow-up study in hepatitis C virus (HCV) monoinfected and HCV/HIV-1...

Read More

A5288: MULTIOCTAVE, Management Using the Latest Technologies...

The study is being done to: test a strategy of using a resistance test to choose anti-HIV drugs. Resistance tests look at the...

Read More

A5324: A Randomized, Double-Blinded, Placebo-Controlled...

ACTG A5324 is a phase IV randomized, double-blinded, placebo-controlled study to assess the efficacy of adding Maraviroc (MVC)...

Read More