Genetic complexity in the replication-competent latent HIV reservoir increases with untreated infection duration in infected youth

Citation: Brumme ZL, Sudderuddin H, Ziemniak C, Luzuriaga K, Jones BR, Joy JB, Cunningham CK, Greenough T, Persaud D. Genetic complexity in the replication-competent latent HIV reservoir increases with untreated infection duration in infected youth. AIDS. 2019 Feb 1;33(2):211-218. PMID: 30325763; PMCID: PMC6298800

Access full article:

https://www.ncbi.nlm.nih.gov/pubmed/30325763

OBJECTIVE:
Timely initiation of combination antiretroviral therapy (ART) limits latent HIV reservoir size and should also limit reservoir genetic complexity. However, the relationship between these two factors remains unclear, particularly among HIV-infected youth.

DESIGN:
Retrospective analysis of replication-competent latent HIV clones serially isolated by limiting-dilution culture from resting CD4 T-cell reservoirs from ART-suppressed, young adult participants of a historic phase I therapeutic vaccine trial (PACTG/IMPAACT-P1059).

METHODS:
Replication-competent latent HIV clones isolated from resting CD4 T cells of four perinatally and 10 nonperinatally infected young adults (average 22 versus 6 years uncontrolled infection, respectively) were sequenced in Pol and Nef. Within-host HIV sequence datasets were characterized with respect to their genetic diversity and inferred immune escape mutation burden.

RESULTS:
Although participants were comparable in terms of sociodemographic and HIV sampling characteristics (e.g. on average, a mean 17 Pol sequences were recovered at five timepoints over up to 70 weeks) and the length of ART suppression at study entry (average 3 years), replication-competent HIV reservoir size, genetic diversity, immune escape mutation burden and variant complexity were significantly higher among the perinatally infected participants who experienced longer durations of uncontrolled viremia. Nevertheless, viral sequences inferred to retain susceptibility to host cellular immune responses were detected in all participants, irrespective of uncontrolled viremia duration.

CONCLUSION:
HIV elimination in late-suppressed youth may be doubly challenged by larger and more genetically complex reservoirs. Strategies that integrate host and viral genetic complexity to achieve HIV remission or cure may merit consideration in such cases.

Categories

CRS
Topics

Clinical Trials

A5302:  BioBank for Surrogate Marker Research for TB...

Primary Objective To obtain sputum, serum, urine, and peripheral blood mononuclear cells (PBMCs) for central TB biorepository...

Read More

P1078: A Phase IV Randomized Double-Blind Placebo-Controlled...

P1078 is a Phase IV, randomized, double-blind, placebo-controlled study of HIV-infected pregnant women and the infants born to...

Read More

NWCS 445: Novel Biomarkers to Shorten TB Treatment

Objectives: Primary: To develop a highly predictive algorithm that identifies TB patients who will be cured by treatment...

Read More

A5253: Sensitivity and Specificity of Mycobacterium...

An estimated 3 million HIV-infected individuals will enter programs for antiretroviral (ARV) treatment in the coming year, with...

Read More

A5332: Randomized Trial to Prevent Vascular Events in HIV...

REPRIEVE (A5332) is a large double-blind, randomized, placebo-controlled study of pitavastatin or placebo for about 72 months....

Read More